Particle Size Distribution and Shape of Silica Dust Aerosols Generated During Sand Transfer: Size Matters

Eric Esswein, MSPH, CIH
Bradley King, MPH, CIH
Arthur Miller, Ph.D.
NIOSH, Western States Office

Acknowledgments

- Joseph E. Fernback, M.S., NIOSH DSHEFS
- Walter McKinney, M.S.E.E., NIOSH, HELD
- Diane Schwegler-Berry, M.S. NIOSH, HELD
- NIOSH CASC Contractor

Disclaimer: The findings and conclusions in this presentation have not been formally disseminated by NIOSH and should not be construed to represent any agency determination or policy.

Special Acknowledgment

NIOSH thanks our industry partners (esp. their employees) for their leadership, commitment and vision to OS&H for their participation in NIOSH research to identify and control silica exposures in exploration and production.

Bulk Dust Samples

- Consistency of talcum powder
- Light tan, "buff" color
- Mostly respirable in size
- Origin: Quartz sand proppant (40/70 mesh)
- Collected by NIOSH mini baghouse retrofit assembly, November, 2013
- Bulk samples: retained by baghouse fabric
- Airborne samples: collected w/ samplers

Bulk Dust Collection

Collected silica dust shed from bag when mini baghouse unit is moved during controlled/uncontrolled trials

Airborne sample collection

walk through aerosol cloud with sampler

Method 1: Resuspension of bulk dust. Collection: MOUDI Model M110R rotating impactor, analysis for aerodynamic mass and size distribution

MOUDI Model M110R

Greatest mass of silica particles average 1.75 microns (μm)

Laboratory procedure:

1) bulk silica dust particles resuspended using acoustical generator

2) airborne dust sampled using micro-orifice uniform deposition impactor™ (MOUDI™) size selective sampler

Aerodynamic Particle Diameter (µm)

Mass Geometric Mean = $1.75 \mu m$ Mass Geometric SD = 2.4

	<0.5 µm	6.3%
	− 0.5-<1 μm	25.0%
	1-<2 µm	30.6%
72 40/ of contints	2-<3 µm	13.0%
72.4% of particles	− 3-<5 µm	8.8%
> 0.5 < 5 μm	5-<10 µm	9.2%
	10-20 μm	3.5%
	>20 µm	3.5%

Method 2: Analysis of bulk dust sample by scanning electron microscope (SEM) equipped with Gresham light element detector and IXRF digital imaging system (EDS).

greatest mass of silica particles between 1 and < 2 µm

Particle size distribution, silica dust

Laboratory procedure:

- 1) bulk dust placed in crucible w/IPA, sonicated, filtered onto PC filter
- 2) Sample placed onto carbon-taped stub and carbon coated
- 3) Analysis by SEM

Sample contained a wide range of particle sizes from 0.1 μm to 7 μm

SEM images Diane Schwegler-Berry, M.S., Walter McKinney, M.S.E,E., NIOSH, HELD

S4800 5.0kV 9.1mm x1.00k SE(M)

50.0um

Particle shapes: both rounded and angular

Particle shapes ngular particles VEGA\\ TESCAN SEM HV: 15.00 kV WD: 12.4160 mm SEM MAG: 10.00 kx 10 µm jperrenoud

Bureau Veritas North America, Inc.

"Some larger particles showed sharp points that evidenced no wear and were freshly broken."

Det: SE

Date(m/d/y): 05/16/14

Scanning Electron Microscopy – Airborne Frac Sand Dust 11/2013

SEM image: Art Miller, Ph.D, NIOSH, OMSHR

Near nano-sized crystalline silica particles

Examples of a small silica particles with approx.

100 nm diameters.

Scanning Mobility Particle Sizer (SMPS) – Count Size Distribution

SMPS estimated aerodynamic particle diameter (nm)

Best Fit Gaussian Curve:
Count Geometric Mean = 227 nm
Count Geometric SD = 1.7

Why Particle Size Matters

ISO/CEN/ACGIH sampling conventions for inhalable, thoracic, and respirable aerosol fractions (source: Lidén and Harper, 2007)

Health-significance of particle size

Source: Oberdörster, G., Phil. Trans. Roy. Soc. London Series A 358 (1775), 2719-2740, 2000

Health-significance of surface area

Energy dispersive X-ray analysis of an aerosol particle (Single Particle #1)

Energy Dispersive X-ray Analysis of an aerosol particle (Single Particle #2)

ED-X-ray analyses: Diane Schwegler-Berry, M.S., Walter McKinney, M.S.E.E., NIOSH, HELD

Energy Dispersive X-ray Analysis of an aerosol particle (Single Particle #3)

Conclusions

- 1) Silica dust aerosols generated during sand delivery operations are <u>highly respirable</u>
- 2) Highly respirable silica dust also <u>freshly</u> <u>fractured;</u> more toxic than aged quartz ^{1.}
- 3) Large fraction of sub-micron and nano-size particles may suggest even higher toxicity
- 4) Engineering controls needed to limit, contain and control exposures
- 5) Sand suppliers (trucking companies) need to become involved in discussions of controls

^{1.} Vallyathan, V., Castranova, V. et. al., *Freshly Fractured Quartz Leads to Enhanced Lung Injury and Inflammation, Potential Role of Free Radicals*. Am. Jour. Resp. Crit. Care Med. Vol. 152. 1995

Why Respirators Alone Are Not the Control Solution

NIOSH REL mean severities, job titles

Assigned
Protection Factor
Half mask = 10
FF mask = 50

73							
Job Title	Total # of samples	Arithmetic Mean	Arithmetic Std. Deviation	Min	Max	Median	
Blender Operator	16	2.58	0.59	0.14	9.70	2.03	
Chemical Truck Operator	3	3.32	1.63	0.80	6.38	2.78	
Fueler	2	0.85	0.17	0.68	1.02	0.85	
Hydration Unit Operator	5	4.28	2.79	0.18	14.92	0.88	
Mechanic	3	1.20	0.39	0.46	1.76	1.38	
Operator, Data Van	1	0.86	2	0.86	0.86	0.86	
Pump Truck Operator	1	0.42		0.42	0.42	0.42	
Q.C. Tech	1	0.26		0.26	0.26	0.26	
Roving Operator	4	0.52	0.24	0.12	1.18	0.39	
Sand Coordinator	10	1.60	0.57	0.34	6.52	1.22	
Sand Truck Driver	1	0.82		0.82	0.82	0.82	
Sandmover Operator	50	10.44	1.59	0.14	55.10	7.62	
T-belt Operator	6	14.55	7.57	0.30	51.40	9.06	
Water Tank Operator	7	1.23	0.34	0.38	2.72	1.12	
Wireline Operator	1	0.14		0.14	0.14	0.14	
Total	111	6.45	0.93	0.12	55.10	2.18	

Questions?

